Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs
نویسندگان
چکیده
Carbon (C) buried deep in soil (below 1 m) is often hundreds to thousands of years old, though the stability and sensitivity of this deep C to environmental change are not well understood. We examined the C dynamics in three soil horizons and their responses to changes in substrate availability in a coarsetextured sandy spodosol (0.0e0.1, 1.0e1.3, and 2.7e3.0 m deep). Substrate additions were intended to mimic an increase in root exudates and available inorganic nitrogen (N) that would follow an increase of belowground biomass at depth, as previously found in a long-term CO2 enrichment experiment at this site. We incubated these soils for 60 days with glucose, alanine, and leaf litter, crossed with an inorganic N amendment equivalent to three times ambient concentrations. The organic substrates were isotopically labeled (13C), allowing us to determine the source of mineralized C and assess the priming effect. Enzyme activity increased as much as 13 times in the two deeper horizons (1.0e1.3, and 2.7e3.0 m) after the addition of the organic substrates, even though the deepest horizon had microbial biomass and microbial phospholipid fatty acids below the level of detection before the experiment. The deepest horizon (2.7e3.0 m) yielded the largest priming response under alanine, indicating that microorganisms in these soil horizons can become active in response to input of organic substrates. Inorganic N amendments significantly decreased the priming effect, suggesting that decomposition may not be N limited. However, alanine (organic N) yielded the highest priming effect at every soil depth, indicating the importance of differentiating effect of organic and inorganic N on decomposition. Distinct priming effects with depth suggest that portions of the soil profile can respond differently to organic inputs. Our findings indicate that the deep soil C pools might be more vulnerable to environmental or anthropogenic change than previously thought, potentially influencing net CO2 exchange estimates between the land and the atmosphere. © 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
Soil properties, labile pools of soil organic carbon and their variations under broadleaf and coniferous plantation in Hyrcanian forest, northern Iran
Afforestation, as a tool to mitigate carbon emission is constrained by available land areain several countries, but Iran has the potential of plantation. In doing so, differences in soilstocks between tree species could give an indication of the effects of future managementchanges. Hence, a better understanding of tree species traits on soil properties is required topredict how changes in ecosy...
متن کاملFactors controlling soil organic carbon stability along a temperate forest altitudinal gradient
Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 5...
متن کاملSoil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop management
Concerns with rising atmospheric levels of CO2 have stimulated interest in C ̄ow in terrestrial ecosystems and the potential for increased soil C sequestration. Our objectives were to assess land management effects on soil organic carbon (SOC) dynamics and SOC sequestration for long-term studies in the tallgrass prairie region of the US. Major losses of SOC following conversion of native prairi...
متن کاملLabile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates.
Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g(-1) soil) to soils amended with and without (13...
متن کاملCarbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum
Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organ...
متن کامل